与CATL、HUAWEI、中国科学院等单位合作,面向国家战略性关键材料,探索以人工智能决策+机器人替代传统经验人工操作的材料科学智能研发闭环新范式。
材料科学智能研发系统
材料科学智能研发实验室系统,以专有数据库平台和智能算法为基础,将智能控制、智能决策技术与一系列材料制备与原位表征、分离与提纯技术相结合,是一套研发过程无需人为参与的材料自主研发与合成系统。该系统包括基于智能机器人的精确位移控制系统,自动化高通量的材料器件高效合成系统,对所制备材料和器件进行表征的自动化与原位表征系统,以及能够对上述系统所获取的数据进行学习并进行反应参数自主优化的智能材料设计系统,形成“反应条件设计-智能合成与制备-自动与原位表征-图谱智能解析-智能决策迭代”的创新研发闭环。
智慧多肽
多肽药物是生物医药领域的重点研究方向,近年来备受关注。常规的肽合成方法需要过量的昂贵试剂且纯化步骤繁琐。固相方法虽简化了肽的纯化,但依然存在时空效率低、制备耗时久、试剂损耗大等问题。因此,开发高收率、快速高效的合成方法变得非常重要。连续流动化学包括微流技术,是在微小特征尺度下(反应空间≤1 mm)进行流动反应,具有传质传热效率高、混合能力强、重现性好、规模易放大等特点。我们面向药物研发阶段开发了一种微流控芯片固相肽合成工艺,面向工业化生产场景开发了一种连续流固相肽生产工艺,使得多肽制备时间缩短近80%,并使用先进传感及自动控制算法,进一步推动具备自动调节和实时监测能力的智能反应设备的开发。
Peptide drugs are a key research direction in the field of biomedicine and have attracted much attention in recent years. Conventional peptide synthesis methods require excessive amounts of expensive reagents and cumbersome purification steps. Although solid-phase methods simplify the purification of peptides, they still suffer from low spatiotemporal efficiency, time-consuming preparation, and high reagent loss. Therefore, it has become important to develop high-yield, fast, and efficient synthesis methods. Continuous flow chemistry, including microfluidics, is a flow reaction at a tiny characteristic scale (reaction space ≤ 1 mm), which is characterized by high mass and heat transfer efficiency, high mixing capacity, good reproducibility, and easy scale-up. We have developed a microfluidic solid-phase peptide synthesis process for the drug discovery stage and a continuous-flow solid-phase peptide production process for the industrialized production scenario, which reduces the peptide preparation time by nearly 80%, and further promotes the development of intelligent reaction equipment with auto-adjustment and real-time monitoring capabilities by using advanced sensing and automatic control algorithms.
智慧锂电
面对能源新材料的迫切发展需要,构建全自动化无人干预操作的锂电电解液配置和测试分析模块,以及锂电纽扣电池的自动化组装和测试分析模块。通过自动化工序、标准化数据和AI算法,可以大幅提升实验效率和准确性,缩短开发周期,实现研发产品的快速优化迭代。
To meet the urgent research and development needs of new energy materials, we will build a fully automated lithium electrolyte mixing and testing analysis module, as well as an automated assembly and testing analysis module for lithium button batteries. Through automated processes, standardized data, and AI algorithms, experimental efficiency and accuracy can be significantly improved, development time can be shortened, and rapid optimization and iteration of R&D products can be achieved.
智慧储能
电氢联储系统结合电池储能系统的快速响应、高效率、低功率成本以及氢储能系统能量密度高、功率容量解耦、低容量成本优势,有望形成有效的时空和规模互补、满足不同时间尺度响应需求的经济性储能综合方案。为了更精确的评估电氢联储系统的经济、运行特性,我们从系统设备底层电化学模型出发,开发高保真度的多尺度电氢联储系统模型。同时依托高保真度的模型,开发基于深度强化学习的电氢联储系统能源管理方法,以实现系统在不同场景下的低成本运行。
The battery-hydrogen hybrid energy storage system combines the fast response, high efficiency, and low power cost of battery energy storage with the high energy density, decoupled power capacity, and low capacity cost advantages of hydrogen energy storage systems. It is expected to form an effective and economically viable storage solution that complements both spatial and temporal requirements, catering to different response time scales. In order to accurately evaluate the economic and operational characteristics of the battery-hydrogen hybrid energy storage system, we have developed a high-fidelity multi-scale model based on the underlying electrochemical models of the system components. Leveraging this high-fidelity model, we have also developed an energy management method for the battery-hydrogen hybrid energy storage system based on multi-agent deep reinforcement learning, aiming to achieve low-cost operation of the system in various scenarios.
智能控制与工业软件
基础研究:“授人以鱼,不如授人以渔”,在面对越来越复杂的工业系统和生产过程的时候,我们希望教给机器的不仅仅是简单的控制方法,而是具有自学习和自优化能力的控制方案。对此,在理解各类人工智能和机器学习算法的基础上,我们要深入研究人类学习各种范式,并结合传统的先进控制思想,开创性地研究具有高效智能学习能力的控制方案和优化算法,并努力从理论上对算法的性能进行分析和解释,为推动人工智能技术在实际复杂工业过程的广泛应用奠定坚实基础。
There is a saying that “it is better to teach one fishing than to give one a fish”. In the face of more and more complex industrial systems and processes, we hope to design an automation that not can control the system, but can learn to control the system by itself. Under this consideration, we need to learn from various learning methods of human and explore various efficient intelligent learning algorithms and control schemes by combining artificial intelligence with conventional control methods, and then strive to analyze and explain the algorithms theoretically to give a solid foundation for the applications of the artificial intelligence in the complex control systems
应用研究:面向各类复杂的实际工业过程,如生物发酵、温室种植、复杂精馏等,我们以提升流程的自动化水平、提高过程的控制性能、改善产品的加工质量以及优化生产的性能指标为目标,应用各类先进控制技术,开展控制方案及系统的集成与应用研发。
For the complex practical industrial processes, such as biological fermentation,greenhouse planting,distillation process,etc., we aim to improve the automation performance of the manufacture and finally optimize the quality and quantity of the product by system integration and developing various advanced intelligent control schemes.
电子化学品
电子化学品作为电子信息产业的基础材料,其发展水平直接关系到国家电子信息产业的竞争力。因此,加强电子化学品的研发和生产,推动产业升级和国产化进程,对于提升整个电子信息产业的核心竞争力具有重要意义。工程中心对电子电镀相关电子化学品及技术, 非电子电镀类高端电子化学品研发及中试, 新型电子化学材料三个研究方向的研发将很好弥补我市在相关领城科技创新短板,并充分发挥对相关产业企业的集聚作用,为我市相关产业发展提供关键中心节点,也以此聚集一批围绕该节点的关键企业,同时也可为相关产业提供技术支撑。重组建设工作开展之后,特别是论证会召开、新闻公布之后,国内半导体产业上下游企业已经与我们进行了多轮接触希望建立实质性合作,目前厦门大学与华为、深圳顺络电子、三安光电、天马、联芯、德尔科技、士兰微电子等行业龙头企业签订合作协议,致力在电子电镀工艺验证、技术产业化等方面进行联合研发、孵化产品与技术、培养和输送人才。
高纯试剂(磷酸)
电子级磷酸广泛用于大规模集成电路、薄膜晶体管液晶显示器(TFT-LCD)等微电子工业,主要用于芯片的清洗与蚀刻。其纯度与洁净度对电子元器件的成品率、电性能及可靠性有很大影响。我们的研究内容为探究湿法磷酸净化过程中痕量杂质离子的迁移机制与选择脱除规律,发展基于化学沉淀、物理吸附、化学吸附、电化学除杂和熔融结晶相结合的磷酸深度净化工艺,根据实验数据优化工艺参数并进行中试放大,最终开发出绿色、环保的通过深度净化湿法磷酸来制备高端电子级磷酸的关键技术路线。
Electronic grade phosphoric acid is widely used in large-scale integrated circuit, thin film transistor liquid crystal display (TFT-LCD) and other microelectronics industry, mainly for chip cleaning and etching. Its purity and cleanliness have a significant impact on the yield, electrical performance and reliability of electronic components. Our research content is to explore the migration mechanism and selective removal rules of trace impurity ions in the wet phosphoric acid purification process. We develop a deep purification process for phosphoric acid based on the combination of chemical precipitation, physical adsorption, chemisorption, electrochemical impurity removal and melt crystallization. Based on experimental data, we optimize the process parameter and carry out pilot scale. Finally, a key technology route for preparing high-end electronic grade phosphoric acid through deep purification of wet process phosphoric acid will be developed, which is green and environmentally friendly.
功能型化学材料(光刻胶、转移胶)
激光的种种优异性质使得它广泛用于对加工精度、效率和良率具有超高要求的先进半导体制造工艺中。在先进激光制造工艺中,除了需要精密设备外,还需要一些关键功能材料。它们能在激光作用下发生特定结构变化,从而改变其物理化学性质,实现目标功能。这些材料的研发需要多学科的碰撞以及反复迭代,通过因此研发难度大,周期长。其中部分材料已经成为国家的卡脖子产品(例如DUV光刻胶),另一些在全球范围内均未实现量产突破同时又是关键产业的瓶颈技术,是潜在的卡脖子技术(例如制约Micro-LED量产的激光辅助巨量转移相关材料)。因此,其研发对国家和社会发展具有重要意义。我们正在通过理性分子设计与自动化合成和高通量筛选的结合,开发面向上述技术的有机/高分子材料。
The excellent properties of LASER make it widely used in advanced semiconductor manufacturing which requires high accuracy, high efficiency and high yield. In advanced LASER manufacturing, in addition to precision equipments, some key functional materials are essential. They undergo pre-designed structural changes upon LASER application, resulting in changes in physical and chemical properties. The R&D of these materials requires multi-disciplinary collision and repeated iterations, which means hugh investment in both manpower, money and time. Nevertheless, R&D of these materials are imminent, because they either have become the country's bottleneck products (such as DUV photoresist), or would be (such as Laser-assisted mass transfer of Micro-LED). We are developing organic/polymer materials for the above technologies through a combination of rational molecular design with automated synthesis and high-throughput screening.
芯片制造工艺
半导体的生产过程可分为晶圆制造工序、封装工序、测试工序等几个步骤。由于国际形势日益复杂,一些国家不断推出旨在遏制中国半导体产业发展的一系列政策,极大的影响了国内在半导体领域获得先进制程的能力。因而突破芯片制程中的棘手问题,实现先进制程的国产化和助力企业突破先进工艺瓶颈成为迫在眉睫的问题。我们致力于直接光刻技术、高性能介质/金属薄膜沉积、精细线宽刻蚀等多个方向的半导体加工工艺和纳米级别表征,助力企业实现工艺的突破。
The semiconductor production process be divided into wafer fabrication process, packaging process, testing process. Due to the complex international situation, as several countries has continuously laid out a series of policies aimed at curbing the development of China's semiconductor industry. This has greatly affected the domestic ability to obtain advanced processes in the semiconductor field. Therefore, it has become an urgent problem to break through the difficult problems in the chip process, realize the localization of advanced process and help enterprises break through the bottleneck of advanced process. We are committed to direct lithography, high-performance dielectric/metal thin film deposition, fine critical dimension etching and other directions of semiconductor processing technology and nanoscale characterization, to help enterprises achieve process breakthroughs.
芯片封装
封装是指将生产加工后的晶圆进行切割、焊线塑封,使电路与外部器件实现连接,并为半导体产品提供机械保护,使其免受物理、化学等环境因素损失的工艺。 随着封装工艺的发展,在三维硅通孔、重布线、凸块工艺中需要金属化薄膜沉积工艺,在此过程中涉及化学镍钯金、化学镍金、电镀铜等。我们通过与企业合作研发电子电镀领域的工艺、电镀和化镀药液,发展自主可控的高端封装工艺和材料,是突破西方国家对我国半导体行业科技封锁,实现芯片产业链国产化的重要支撑。
Packaging refers to the process of cutting and welding the wafer after wafer fabrication, and connecting the circuit with external devices. Then plastic sealing to provide mechanical protection for the chip from physical, chemical and other environmental factors damage. With the development of packaging technology, metallized film deposition process is needed in TSV, RDL and bumping process, which involves chemical nickel palladium, chemical nickel gold, electroplated copper and so on. We cooperate with enterprises to research and develop processes in the field of electronic plating, and plating solutions. The development of independent high-end packaging processes and materials is an important support for breaking through the technological blockade imposed by Western countries on China's semiconductor industry.
转载声明:如需转载请在本篇文章下留言,转载请保留本文链接🔗