Research 研究领域

1. Instrument control and data mining

仪器控制与数据挖掘

1BED2

(a) There is a Chinese proverb said: sharp tools make good work. We are developing cutting-edge instruments and technique for single-molecule scale charge transport, spectroscopic, electrochemical and catalytic studies.

工欲善其事,必先利其器。我们现有的仪器已经达到了皮米-飞安水平控制精度的全自动化控制,并将长期工作在单分子电子学、光谱学、电化学和催化的精密科学仪器研发。

(b) The reproducibility and reliability is one of the major challenges for current stage of single-molecule electronics studies. We believe that No statistics, No reliable molecular electronics: the single-molecule electronics measurement only make sense if the results are examined after careful statistics and data mining. We are developing the data mining programs and methodologies for exploring more reliable information from single-molecule scale studies. Meanwhile, we also introduce deep learning to extract the characteristic molecular signal of small probability event and high dynamic processes.

实验数据的解读,特别是实验结果的可信度和可重现性是现阶段分子电子学的最大挑战。我们认为统计分析在这一过程中不可或缺。我们将长期进行单分子电子学测试分析软件的研发,并探索新的统计分析算法在单分子尺度研究数据解读中的应用。与此同时,我们还引进深度学习来提取小概率事件以及高度动态过程中的分子信号特征来更好的理解实验现象。

(c) There is a saying that “it is better to teach one fishing than to give one a fish”. In the face of more and more complex industrial systems and processes, we hope to design an automation that not can control the system, but can learn to control the system by itself. This is the same with the training objective for the graduate students in our group, which is not simply to teach them knowledge, but the more important is to teach them efficient learning methods. We need to learn from various learning methods of human and explore various efficient intelligent learning algorithms on the basis of various artificial intelligence and machine learning algorithms, and then strive to apply them to various practical systems and engineering.

“授人以鱼,不如授人以渔”,在面对越来越复杂的工业系统和生产过程的时候,我们希望教给机器的不是简单的控制方法,而是自己学会控制系统的方法。这就跟我们课题组培养研究生的目标一样,不是简单地传授给他们知识,更重要的是要教给他们高效学习知识的方法。对此我们需要在理解各类人工智能和机器学习算法的基础上,深入研究人类学习的各种范式,进而研究各种高效的智能学习控制算法,并努力将其应用于各类实际系统与工程。

Li, R.; Lu, Z.; Cai, Y.; Jiang, F.; Tang, C.; Chen, Z.; Zheng, J.; Pi, J.; Zhang, R.; Liu, J.; Chen, Z.-B.; Yang, Y.; Shi, J.; Hong, W.*; Xia, H.*, Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions, Journal of the American Chemical Society, 2017, 139, 14344.

 

Huang, F.; Li, R.; Wang, G.; Zheng, J.; Tang, Y.; Liu, J.; Yang, Y.; Yao, Y.*; Shi, J.*; Hong, W.*, Automatic classification of single-molecule charge transport data with an unsupervised machine-learning algorithm, Physical Chemistry Chemical Physics, 2020, 3, 1674-1681.

 

Pan, Z.-C.; Li, J.; Chen, L.; Tang, Y.; Shi, J.; Liu, J.*; Liao, J.-L.*; Hong, W.*, Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process, Science China-Chemistry, 2019, 9, 1245-1256.

 

Tang, C.; Chen, L.; Zhang, L.; Chen, Z.; Li, G.; Yan, Z.; Lin, L.; Liu, J.; Huang, L.; Ye, Y.; Hua, Y.; Shi, J.; Xia, H.*; Hong, W.*, Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions, Angewandte Chemie International Edition, 2019, 31, 10601-10605.

 

Chen, H.#; Zheng, H.#; Hu, C.#; Cai, K.; Jiao, Y.; Zhang, L.; Jiang, F.; Roy, I.; Qiu, Y.; Shen, D.; Feng, Y.; Alsubaie, F. M.; Guo, H.*; Hong, W.*; Stoddart, J. F.*; Giant conductance enhancement of intramolecular circuits through interchannel gating, Matter, 2020, 2, 378-389.

 

Jiang, F.; Trupp, D. I.; Algethami, N.; Zheng, H.; He, W.; Alqorashi, A.; Zhu, C.; Tang, C.; Li, R.; Liu, J.; Sadeghi, H.; Shi, J.; Davidson, R.; Korb, M.; Sobolev, A. N.; Naher, M.; Sangtarash, S.*; Low, P. J.*; Hong, W.*; Lambert, C. J.*, Turning the tap: conformational control of quantum interference to modulate single-molecule conductance, Angewandte Chemie International Edition, 2019, 52, 18987-18993.

 

Li, X.#; Wu, Q.#; Bai, J.#; Hou, S.; Jiang, W.; Tang, C.; Song, H.; Huang, X.; Zheng, J.; Yang, Y.; Liu, J.; Hu, Y.; Shi, J.; Liu, Z.*; Lambert, C. J.*; Zhang, D.*; Hong, W.*, Structure-independent conductance of thiophene-based single-stacking junctions, Angewandte Chemie International Edition, 2020, 8, 3280-3286.

 

Cai, S.#; Deng, W.#; Huang, F.; Chen, L.; Tang, C.; He, W.; Long, S.; Li, R.; Tan, Z.; Liu, J.; Shi, J.; Liu, Z.*; Xiao, Z.*; Zhang, D.*; Hong, W.*, Light-driven reversible intermolecular proton transfer at single-molecule junctions, Angewandte Chemie International Edition, 2019, 12, 3829-3833.


2. Single-molecule Raman and Thermoelectricity

单分子拉曼与热电

D508

(a) Characterization of electrical transport properties at single-molecule scale provides not only indirect static characterization of molecular-metal electrode coupling state, adsorption configuration and conformational changes, but also direct and dynamic monitoring of chemical reactions at single-molecule scale. In addition, we are also committed to studying the significant catalytic effect of chemical reactions at single-molecule scale by the oriented external electric fields within the metal electrodes gap. However, the conductance property cannot feedback the energy resolution, so we need to directly characterize the structure of the molecular junction by means of spectroscopy. Therefore, we aim to develop the microchip based, simultaneous and real-time Raman spectroscopic and electrical characterization technology, to characterize the molecular structure, reaction state and intermediates, thus to construct the structure-property relationship between the structures of molecular junction and the electrical transport properties. Furthermore, we will also consider the change of Raman spectra of molecular junction under the influence of electric transport process, and investigate the physical and chemical enhancement mechanism of Raman spectra.

单分子尺度电输运性质表征技术提供了从研究分子-金属电极耦合状态、吸附构型以及构象变化与电性质差异的间接静态表征,到研究单分子尺度化学反应的过程的直接、动态监测。同时我们也致力于研究,在金属电极间隔内的巨大定向外加电场对单分子尺度化学反应显著的催化作用。然而电导性质无法反馈能量分辨率,我们还需要借助波谱学的方法来直接表征分子结的结构。因此我们旨在发展基于微纳加工技术制备的微芯片结合拉曼光谱的同步、实时谱学电学联用表征技术,对分子结结构、反应始终态和中间体进行表征,构建单分子结结构与电输运性质之间的构效关系。进而,我们也将考虑电输运过程影响下分子结的拉曼光谱变化,考察拉曼光谱的物理和化学增强机制。

(b) Organic thermoelectric materials are expected to make breakthroughs in thermoelectric efficiency due to their diversity of organic molecular design and efficiency of synthesis. Meanwhile, the characterization of basic physical and chemical processes such as phonon and electron coupling has become an important research frontier of physical chemistry and material science at the present stage. However, how to distinguish the influence on thermoelectric effect by the electron transport and phonon transport in organic thermoelectric materials, as well as the molecular structure and aggregation mode, has been a great challenge in both experimental and theoretical research. Therefore, we propose a comprehensive characterization of organic molecules thermoelectric material properties at single-molecule scale, through the micro & nano fabrication of thermoelectric chip and systematic evaluation of different functional groups. Using the quantum interference effect in the electric transport and gating technology, we plan to explore the seebeck coefficient as high as possible and the thermal conductivity as low as possible to achieve high thermoelectric efficiency of single-molecule devices, thus offering technical support from single-molecule level for the future design of organic thermoelectric materials.

有机热电材料由于有机分子设计的多样性和加工性有望在热电效率上取得突破,同时,声子与电子的耦合作用等基本物理化学过程的表征,也成为现阶段物理化学和材料科学的重要研究前沿然而,如何区分有机热电材料中电子输运和声子输运等过程以及分子结构和聚集方式对热电效应的影响,其实验和理论研究均极具挑战。因此,我们拟基于微纳加工技术制备热电芯片,从单分子水平上对有机分子材料热电性质进行综合表征,并对不同功能基团进行系统评估,利用在单分子器件电输运中的量子干涉效应和门控等技术探索获得尽可能高的热电势和尽可能低的声子热导实现具有高热电效率的单分子器件,以此为未来从分子水平设计有机热电材料设计提供表征技术支持。

Liu, J.; Huang, X.; Wang, F.; Hong, W.*, Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application, Accounts of Chemical Research, 2019, 1, 151-160.

 

Liu, J.; Zhao, X.; Al-Galiby, Q.; Huang, X.; Zheng, J.; Li, R.; Huang, C.; Yang, Y.; Shi, J.; Manrique, D. Z.; Lambert, C. J.*; Bryce, M. R.*; Hong, W.*, Radical enhanced charge transport in single-molecule phenothiazine electrical junctions, Angew. Chem. Int. Ed. 2017, 56, 13061-13065.

 

Huang, X.#; Tang, C.#; Li, J.#; Chen, L.-C.#; Zheng, J.; Zhang, P.; Le, J.; Li, R.; Li, X.; Liu, J.*; Yang, Y.; Shi, J.; Chen, Z.; Bai, M.; Zhang, H.-L.; Xia, H.; Cheng, J.*; Tian, Z.-Q.; Hong, W.*, Electric field-induced selective catalysis of single-molecule reaction, Science Advances, 2019, 6, eaaw3072.

 

Huang, C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J.-T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; Petersen, A. U.; Wandlowski, T.; Mikkelsen, K. V.; Solomon, G. C.*; Brøndsted Nielsen, M.*; Hong, W.*, Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique, Nat. Commun. 2017, 8, 15436.

Zhang, R.#; Xie, H.#; Cai, S.; Hu, Y.; Liu, G.-K.; Hong, W.*; Tian, Z.-Q.*, Transfer-learning-based Raman spectra identification, Journal of Raman Spectroscopy, 2020, 1, 176-186.

 

Zheng, J.#; Liu, J.#; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.*; Chen, Z.-B.; Shi, J.; Xiao, Z.; Hong, W.*; Tian, Z.-Q., Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions, Chemical Science, 2018, 22, 5033-5038.

 

3. Single-molecule spintronics

单分子自旋电子学

DEC3

Single-molecule spintronics is a new interdisciplinary discipline that combines magnetics with single-molecule electronics, mainly studying the role of electronic spins in the transport of single molecules. His research objects include the spin polarization of electrons, spin-dependent scattering, spin relaxation, and related properties and applications. Our goal is to use STMBJ and MCBJ technologies to deeply study its internal mechanism of action and develop new quantum devices, such as, single molecule spin valves, single molecule spin filters, spin-polarized single molecule electroluminescence, single molecule spin field effect transistors, and quantum calculations based on single-molecule spins. We also focus on single-molecule spin thermoelectric effects.

单分子自旋电子学主要研究电子自旋在单个分子电输运的作用,是一门结合磁学与单分子电子学的新兴交叉学科。其研究对象包括电子的自旋极化、自旋相关散射、自旋弛豫以及与此相关的性质及其应用等。我们的目标是利用STMBJ MCBJ技术深入研究其内在作用机理,开发出新型量子器件,诸如:单分子自旋阀,单分子自旋过滤器,自旋极化的单分子电致发光,单分子自旋场效应晶体管,以及基于单分子自旋量子计算。我们还关注单分子自旋热电效应。

4. Single Cluster Electronics and Electrochemistry

单团簇电子学与电化学

1F64D

(a) Understanding the rule of charge transport through single nanocluster under nanometer even subnanometer scale is significant for revealing the novel physical and chemical properties and catalytic activities of nanocluster materials. We use self-constructed single-molecule electrical measurement instruments (MCBJ and STM-BJ) with electrochemical gating functions, and combine it with a self-constructed comprehensive testing platform, integrating temperature control, pressure control, magnetic control and other functions, and it can be used with Raman, Ultrafast spectroscopy. This testing platform can be used to achieve accurate measurement of the charge transport properties of a single nano-cluster with an atomic-level precise structure. On the one hand, we develop the applications of electronics, including single-cluster photoelectrical, thermoelectrical, magnetic devices, and memristors, etc. On the other hand, we investigate how the energy level structure, surface charge state and charge transport properties of catalysts effect on their reaction activities and catalytic mechanisms.

理解纳米乃至亚纳米尺度下单个团簇的电输运规律对揭示团簇材料的新奇物理化学性质及催化活性具有重要意义。我们利用自主搭建的,具有电化学门控功能的单分子电学测量仪器(MCBJSTM-BJ),结合自主搭建的,集合了温控、压力控、磁控等功能并可与拉曼、超快光谱进行联用的综合测试平台,实现对具有原子级精确结构的单个纳米团簇的电输运性质的精确测量:一方面发展单团簇光电、热电和磁性器件以及忆阻器等方面的电子学应用;另一方面探索团簇能级结构、表面电荷状态以及其电输运行为与催化反应活性及催化机理之间的联系,为催化剂的理性设计提供实验支持。

(b) Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Working with Prof. Silvio Decurtins’ group, we develop a promising and operationally simple approach for modification/functionalization on different electrode surfaces upon efficient desilylation chemistry.

电极表面修饰和界面工程是有机器件中的一个最关键问题,通过与Silvio Decurtins教授的密切合作,我们研发了一种通过去硅烷化反应具有高度普适性的表面修饰技术。

(c) Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and control the charge transport on a single-molecule scale. The additional electrochemical gating provides a unique opportunity to manipulate the energy alignment and molecular redox processes for a single-molecule junction.

施加的电化学环境可以有效改变单分子器件的化学结构和能级分布,将单分子技术与电化学技术耦合可以实现对单分子尺度器件的有效调控。

Bai, J.#; Daaoub, A.#; Sangtarash, S.#; Li, X.#; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; Liu, J.; Yang, Y.; Shi, J.; Mészáros, G.; Chen, W.*; Lambert, C.*; Hong, W.*; Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating, Nature Materials, 2019, 4, 364-369.

Liu, J.; Zhao, X.; Zheng, J.; Huang, X.; Tang, Y.; Wang, F.; Li, R.; Pi, J.; Huang, C.; Wang, L.; Yang, Y.*; Shi, J.; Mao, B.-W.; Tian, Z.-Q.; Bryce, M. R.*; Hong, W.*; Transition from tunneling leakage current to molecular tunneling in single-molecule junctions, Chem, 2019, 2, 390-401.

 

Zheng, H.#; Hou, S.#; Xin, C.#; Wu, Q.; Jiang, F.; Tan, Z.; Zhou, X.; Lin, L.; He, W.; Li, Q.; Zheng, J.; Zhang, L.; Liu, J.; Yang, Y.; Shi, J.; Zhang, X.; Zhao, Y.; Li, Y.*; Lambert, C.*; Hong, W.*, Room-temperature quantum interference in single perovskite quantum dot junctions, Nature Communications, 2019, 10, 5458.

 

Tang, C.; Zheng, J.; Ye, Y.; Liu, J.; Chen, L.; Yan, Z.; Chen, Z.; Chen, L.; Huang, X.; Bai, J.; Chen, Z.; Shi, J.; Xia, H.*; Hong, W.*, Electric-field-induced connectivity switching in single-molecule junctions, iScience, 2020, 1, 100770.

 

5. 单分子生物传感与组装

Single-molecule biosensor and assembly

1E370

Supramolecular assemblies based on non-covalent bond intermolecular interactions open the door to supramolecular devices, biomimetic materials, and smart materials. Using supramolecular interactions, people have designed and assembled, for example, supramolecular wires, sensors, and electronics switches, magnetic materials and liquid crystal materials. However, with regard to more advanced biomolecular assembly, such as "bottom-up" assembly of functional biomolecular circuits, biosensor arrays, is still a dream!

We start from the single-molecule scale and study the charge transport properties of non-covalent bond-based self-assemblies and biofunctional molecules from the bottom-up, and dig deep into the interaction mechanism of supramolecules to guide functionalized molecular devices quickly assemble and build single-molecule biosensors with single-molecule sensitivity and high specificity.

基于非共价键的分子间相互作用所形成的超分子组装体打开了通往超分子器件、仿生材料和智能材料的大门,利用超分子作用,人们已经设计组装了诸如超分子导线、传感器、电子开关、磁性材料和液晶材料等。然而,面对更高级的生物分子组装,譬如“自下而上”的组装功能化的生物分子电路、生物传感阵列,仍然是一个梦想!

我们从单分子尺度出发,“自下而上”地,研究基于非共价键自组装体以及生物功能分子的电输运性质,深入挖掘超分子的相互作用机制,以指导基于超分子作用的功能化分子器件快速组装以及构筑具有单分子灵敏度和高特异性的单分子生物传感器。

Wang, L.; Gong, Z. L.; Li, S. Y.; Hong, W.*; Zhong, Y. W.; Wang, D.; Wan, L. J.; Molecular conductance through a quadruple-hydrogen-bond-bridged supramolecular junction, Angewandte Chemie, 2016, 40, 12581-12585.

 

Tan, Z.; Zhang, D.; Tian, H. R.; Wu, Q.; Hou, S.; Pi, J.; Tan, Y. Z.; Chen, Z.; Shi, J.; Xiao, Z.; Lambert, C.; Xie, S.; Hong, W.*, Atomically defined angstrom-scale all-carbon junctions, Nature communications, 2019, 1, 1-7.

Yang, W.-Y.; Zheng, J.; Zhang, X.-G.; Chen, L.-C.; Si, Y.; Huang, F.-Z.*; Hong, W.*; Charge transport through a water-assisted hydrogen bond in single-molecule glutathione disulfide junctions, Journal of Materials Chemistry C, 2020, 2, 481-486.

 

Jiang, W.; Yang, R.; Lin, P.; Hong, W.*; Fang, B.*; Bioinspired genetic engineering of supramolecular assembled formate dehydrogenase with enhanced biocatalysis activities, Journal of Biotechnology, 2019, 292, 50-56.

 

Yang W.-Y.; Lei Z.-C.; Hong W.*; Huang F.-Z.*; Advances in charge transport through DNA molecular junction by employing electrodes pair with nanometer-sized separation, Acta Chimica Sinica, 2019, 10, 951-963.

 

6. 二维材料与单分子操控

2D materials and Single-molecule manipulation

41C15

(a) The research at the single-molecule scale can help us discover some phenomena that can’t be found in the macro-scale, and deepen our understanding of physics, chemistry, and biological processes. To do a good job, one must sharpen one’s tools. The prerequisite for the study of single molecules is the development of single-molecule manipulation technologies, especially for small molecules down to the size of few nanometers. We mainly combine the home-built break junction technology with laser, use newly developed single-molecule counting data analysis method, and use the enhanced gradient optical force generated by the plasmon effect in the nano-gap to overcome the Brownian motion of molecules, thus achieving stable manipulation of single-molecules. Further, we aim to realize the sorting of small molecules and use them in conjunction with other instruments, such as microfluidics or scanning tunneling microscope, to apply them to the regulation of single-molecule reactions or the construction of molecular devices.

在单分子的尺度展开研究,能够帮助我们发现宏观状态下所没有的现象,从而加深对物理,化学,生物等过程的理解。工欲善其事,必先利其器。展开研究的必要前提是单分子操纵技术的开发,尤其是对低至几纳米的小分子的操纵。我们主要将课题组自主搭建的裂结仪器与激光联用,结合新发展的单分子计数的数据分析手段,利用纳米间隙中由等离激元效应生成的增强的梯度光学力来克服分子的布朗运动,从而实现分子的稳定捕获。进一步,我们旨在实现小分子的分选,并与其他仪器进行联用,如微流控或扫描隧道显微镜,将其运用到对单分子反应的调控或分子器件的构筑过程中。

(b) We are exploring the connectivity driven conductance and quantum interference effect in big aromatic system, and our goal is to develop some approach to isolate and manipulate quantum interference patterns in the hearts of polycyclic aromatic hydrocarbons, which could be a significant step toward realizing the potential of single-molecule electronics.

我们进行了对连接位点和量子干涉效应的一系列探索,该方向研究的主要目的在于摸索一种全新的方法来实现对共轭分子骨架中量子干涉效应的控制,以此提供一种对于单分子器件电学性质调控的新思路。

(c) We are trying to develop a novel technique exploring the potential of 3D printing technique in the bottom-up fabrication of molecular materials via layer-by layer click-chemistry and self-assembly of organic molecules.

我们也将尝试3D打印技术在Bottom-Up分子材料制备中的应用,通过精确的位移控制,和层层自组装或单分子尺度反应的方式,制备结构高度可控的分子薄膜材料。

(d) Graphene, which consists of a two-dimensional (2D) sheet of covalently bonded carbon atoms, has unique electronic property and strong catalytic activity. We are exploring the application of graphene as catalytic and conductive electrode materials for energy relevant research. Graphite, based on its properties, is considered as the most promising material in the application of high-temperature structural devices; however, it can be oxidized easily at high temperature. Here, we propose the utilization of slurry dipping, electrochemical methods, etc. that prevents graphite surface from oxidation at high temperature, to produce SiC composite coating with high quality and extend its industrial application fields.

石墨烯,是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料,具有优异的电子学性质和特别的催化活性。我们将探索石墨烯作为具有催化活性的导电电极材料在能源领域的相关应用。石墨具有优异的性能,是高温结构材料中最具潜力的,但其在高温下容易氧化。这里我们采用料浆法、电化学法等技术,制备出高质量的碳化硅复合涂层,可以在高温下保护石墨不被氧化,拓展石墨在工业上的应用领域。 

Zhan, C.#; Wang, G.#; Zhang, X.-G.; Li, Z.-H.; Wei, J.-Y.; Si, Y.; Yang, Y.*; Hong, W.*; Tian, Z.-Q.; Single-molecule measurement of adsorption free energy at the solid-liquid interface, Angewandte Chemie International Edition, 2019, 41, 14534-14538.

 

Sangtarash, S*; Huang, C; Sadeghi, H; Sorohhov, G; Hauser, J; Wandlowski, T; Hong, W*; Decurtins, S; Liu, S.-X.*; Lambert C.*, Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic, Journal of the American Chemical Society2015, 35, 11425-11431.

 

Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G., Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochemistry Communications 2008, 10, 1555-1558. (Most cited paper on Electrochemistry Communications in 2011, 500+ citations)

 

Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G., Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors, Journal of Physical Chemistry C 2010, 4,1822-1826. (Most cited paper in Journal of Physical Chemistry C 2010.4-2012.4, 200+ citations)

Zhao, S.#; Wu, Q.#; Pi, J.#; Liu, J.#; Zheng, J.; Hou, S.; Wei, J.; Li, R.; Sadegji, H.; Yang, Y.*; Shi, J.; Chen, Z.; Xiao, Z.; Lambert, C. J.*; Hong, W.*, Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction, Science Advances, 2020.

 

Wang, Z.#; Zhang, Q.#; Long, S.; Luo, Y.; Yu, P.; Tan, Z.; Bai, J.; Qu, B.; Yang, Y.*; Shi, J.; Zhou, H.; Xiao, Z.-Y.; Hong, W.*; Bai, H.*, Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor, ACS Applied Materials & Interfaces, 2018, 12, 10437-10444.